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The nonlinear stability of a two-fluid system consisting of a viscous film bounded
above by a heavier and thicker layer, between two horizontal plates, with one of the
plates oscillating horizontally about a fixed position, is investigated. An evolution
equation governing the thickness of the viscous film is derived. Numerical simulations
of this equation on extended spatial intervals demonstrate nonlinear small-amplitude
saturation of the Rayleigh–Taylor instability in certain parametric regimes. In the low-
frequency time-asymptotic regimes, the averaged properties of the extensive spatio-
temporal chaos are not steady, but rather oscillate in time. A quasi-equilibrium
theory is proposed in which the low-frequency results are interpreted by building
upon the notions developed earlier for the simpler case of a non-oscillatory film
governed by the classical, constant-coefficient Kuramoto–Sivashinsky equation. In
contrast, the higher-frequency solutions exhibit piecewise linear profiles that have
never been encountered in simulations of non-oscillatory films. The amplitude as
a function of frequency has a single minimum point which is of order one. Also,
preliminary results of numerical simulations of film evolution are given for the
large-amplitude parametric regimes. At some parameter values, rupture is observed,
similar to the case with no base flow; in other regimes the basic flows succeeds
in preventing rupture. The complete characterization of the factors responsible for
the particular asymptotic fate of the film, rupture or no rupture, remains an open
question.

1. Introduction
It is well recognized that the gravitational, ‘Rayleigh–Taylor’, instability (Rayleigh

1883; Taylor 1950) of fluid layers occurs in a variety of engineering and physical
situations, ranging from coating flows with paint or photographic material, to the
boiling of liquids (Berenson 1962), to inertial confinement fusion experiments in
which pellets of deuterium–tritium fuel undergo laser implosion (Kilkenny et al.
1994; Berning & Rubenchik 1998), to certain geophysical processes (Whitehead 1988;
Canright & Morris 1993; Ribe 1998). In many applications, rupture, such as in the
break up of the shell containing the fuel before the fuel is fully compressed in inertial
confinement fusion, is an undesirable event.

The linear theory of the Rayleigh–Taylor instability is documented in Chan-
drasekhar (1961), and later developments, including the work on two-layer Couette
flows of fluids with different densities, are discussed in the book of Joseph & Renardy
(1991). The instability is a long-wave one, the short waves being damped by surface
tension. Within the last twenty years, significant advances have been made in under-
standing the nonlinear development of the longwave regime of the Rayleigh–Taylor
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instability of a viscous film. The case of a steady linear basic velocity profile between
two plates (plane two-fluid Couette flow) has been investigated by Babchin et al.
(1983), who derived an evolution equation of the Kuramoto–Sivashinsky (KS) type
for the undulation of the interface between the two fluids using a weakly nonlin-
ear analysis. They showed that, for a range of the basic velocity shear rate, film
rupture is prevented owing to the nonlinear saturation of the instability such that
the amplitude of the interfacial waves remains small as compared to the average
film thickness. Yiantsios & Higgins (1989) examined the two-dimensional Rayleigh–
Taylor instability of a two-fluid system with no basic velocity field. They found
numerically that if gravitational effects are sufficiently weak, so that the Bond num-
ber is smaller than some critical value, formation of stable pendant drops is possible,
with a much thinner film of fluid spanning the space between the drops. Above
this critical value, drop break-up occurs. Fermigier et al. (1992) considered three-
dimensional instabilities of the same system and the dynamics of pattern selection.
They found experimentally that at large times, drop coalescence is possible leading to
drop break-up and dripping even at small Bond numbers. Also, a three-dimensional
Rayleigh–Taylor instability was examined numerically by Tryggvason & Unverdi
(1990).

The effect of an oscillatory primary flow on single-fluid systems has been shown
to be either linearly stabilizing or destabilizing (Hall 1975; Davis 1976; von Kerczek
1982, 1987). Or (1998) has extended the pioneering work of Yih (1968) in the
instability of a fluid layer supported by a horizontal plate oscillating in its own plane
by including disturbances whose wavelength is not large. For two-fluid oscillatory
Couette flows between two horizontal plates, the two-dimensional linear stability
was considered by Coward & Papageorgiou (1994). In the case they studied, the
densities are equal, and one of the plates moves with a velocity that consists of a
steady part, as in Babchin et al. (1983), combined with a smaller oscillatory term.
They concluded that the interface between the two layers is unstable if the thinner
of the two layers contains the more viscous fluid as in the case of steady Couette
flow (Yih 1967). Coward & Papageorgiou (1994) found that the effect of oscillations
can be either stabilizing or destabilizing depending on parameters. King, Leighton
& McCready (1999) studied the same system and confirmed experimentally their
linear-theoretical results. They showed that the results can be derived by combining
those for the purely oscillatory and purely steady flows. Coward & Renardy (1997)
extended the results of Coward & Papageorgiou (1994) by considering the effects
of arbitrary wavelength and adding a streamwise pressure gradient consisting of a
steady part and an oscillatory component, which may have a phase shift with respect
to the oscillating top plate. Halpern, Moriarty & Grotberg (1999) considered the
effects of a periodic shear stress on the linear stability of a thin film coating the
inner surface of a compliant tube, to simulate the effects of oscillatory airflow on
pulmonary airway closure. This system is an example of a core–annular flow, which
has certain similarities to the Rayleigh–Taylor system. Examples of non-oscillatory
core–annular flows include separated flow of steam and water in power generation
facilities, lubricated pipelining of crude viscous oils (see Joseph & Renardy 1991), and
air flow through the small airways of the lungs which are coated with a thin viscous
film (Johnson et al. 1991; Halpern & Grotberg 1992). In the core–annular film flow,
the destabilizing factor is the component of capillary forces due to the azimuthal
curvature of the interface, which may cause the fluid core to break up.

In the first weakly nonlinear theory for a steady core–annular flow, Frenkel et al.
(1987) have shown that there are parametric regimes such that the growth of the inter-
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face undulation is arrested by nonlinear effects described by a Kuramoto–Sivashinsky
equation. The subsequent work on nonlinear regimes of core–annular flows included
the papers by Frenkel (1988); Papageorgiou et al. (1990); Frenkel & Kerchman
(1994); Kerchman (1995). In Frenkel (1988) and Papageorgiou et al. (1990) a modi-
fied Kuramoto–Sivashinky equation was derived which included the dispersive effect
of viscosity stratification between the core and the annular film. This dispersive effect
was shown to produce less chaotic flows. The weakly nonlinear instability of an oscil-
latory core–annular flow was considered by Coward, Papageorgiou & Smyrlis (1995)
for the case where the pressure gradient driving the core flow is a constant modified
by a smaller oscillatory term (which therefore can be called the ‘weakly oscillatory’
case). They obtained a Kuramoto–Sivashinsky equation (also including the disper-
sive terms due to sufficiently large viscosity contrast) with time-periodic coefficients
having a non-zero mean, and simulated this equation for a range of spatial intervals.
They documented extensive computations and characterizations of routes to chaos
and quasi-periodic regimes. As far as we know, the nonlinear development of the
Rayleigh–Taylor instability (or, for that matter, any other instability of a two-layer
Couette flow) for the oscillatory case has not been studied before.

In this paper, we investigate the Rayleigh–Taylor instability of a two-fluid system
between two horizontal plates, with the bottom plate fixed and the top plate oscillating
in its plane with a zero-mean velocity. The bottom fluid is a viscous film bounded
below by the fixed plate and above by a thicker layer of a denser liquid. The case with
zero-mean velocity can be expected to be significantly different from that of a flow
where the direction of the velocity is never reversed. This is because the basic flow is
responsible for arresting the growth of interfacial waves (Babchin et al. 1983), but this
mechanism is not effective when the basic velocity is close to zero. It is known that in
the case of no primary flow the film ruptures, and the rupture time can be estimated
from the linear theory, the nonlinear theory giving some quantitative corrections,
but not making any qualitative difference and still predicting rupture. With the
steady Couette flow, the linear stability theory still predicts instability suggesting
breakup, but the nonlinear theory leads to the qualitatively different conclusion,
the small-amplitude saturation of instability and thus prevention of rupture. The
zero-mean oscillatory primary flow combines the periods of almost zero flow with
those of almost steady flow. These point in the opposite directions as to the breakup
of the film. Therefore, the principal question arises whether the small-amplitude
saturation of instability, keeping the film from breakup, is still possible. This issue
was our motivation for undertaking the present work. Also, as was mentioned
above, the nonlinear stability of oscillatory flows is important in pulmonary airway
closure.

In § 2, the basic oscillatory flow for the uniform-thickness case is determined. This
flow is Rayleigh–Taylor unstable to long-wave disturbances as was mentioned above.
The nonlinear evolution of disturbances is considered in § 3. Using a weakly nonlinear
multiparameter analysis, a modified Kuramoto–Sivashinsky equation for the interface
deviation is obtained, together with the parametric constraints appropriate for the
low-frequency regimes, and with a quasi-equilibrium theory predicting the form of
the solutions. The behaviour of this equation is studied numerically over large spatial
domains, assuming periodic boundary conditions. Low-frequency numerical results
are presented in § 4, and comparisons are made with the canonical KS solutions, and
with the predictions of the quasi-equilibrium theory of § 3. Some preliminary results
for high frequencies are given in § 5, and for large-amplitude regimes in § 6. Finally,
§ 7 gives a concluding discussion of the results.
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2. Basic flow
Consider a two-fluid system between two horizontal plates, a distance h+H apart,

with the top plate oscillating sinusoidally at a frequency Ω and the bottom plate
fixed. A thin film of constant viscosity µ, and density ρF , is bounded below by the
fixed plate at y = −h, and above (y = 0) by a fluid layer (of thickness H) that has
a higher density ρL > ρF . For simplicity, we assume that the two fluids have the
same viscosity, µ. For the basic unidirectional (horizontal) flow, when the interface
between the two fluids is flat, the only non-trivial Navier–Stokes (NS) equations, the
x-momentum equations, reduce to one-dimensional diffusion equations:

ρjUjt = µUjyy, (2.1)

where Uj is the horizontal fluid velocity, j = F for the film and j = L for the top liquid.
In addition to the no-slip conditions at the plates (in particular, UL(H, t) ∝ sin (Ωt+φ),
−∞ < t < ∞, where φ is a constant phase), there are those of continuity of both
velocity and shear stress at the interface y = 0: UF (0, t) = UL(0, t), UFy(0, t) =
ULy(0, t). The (flat-interface, Nusselt-type) solution to this problem can be written,
without loss of generality, as

Uj(y, t) = U0Re

(
eiΩt

(
sinh kjy

kjh
+

cosh kjy

Ch

))
, (2.2)

(where Re designates the real part, kj := (ρjΩ/µ)1/2eiπ/4, and C := kF coth kFh; here
and below we use := to indicate the definition of a quantity), so that the velocity
shear rate at the interface has the convenient form (∂Uj/∂y)(0, t) = W0 cosΩt. Here,

W0 := U0/h. (2.3)

It is convenient for what follows to treat W0, and not the top plate velocity amplitude,
as the independent parameter of oscillations. The convenient phase for interfacial
shear-rate oscillations can be achieved, of course, by an appropriate choice of the
time origin.

The hydrostatic pressure and velocity profile (2.2), the same as the pressure in
the stagnant-film case, comprise the base flow solution satisfying all the differential
equations and boundary conditions of the NS problem.

For small enough Ω, Uj is nearly linear in y at each time. This is shown in figure 1,
where U is plotted versus y at three instances of time, for Ω = 1/300 and for the
indicated values of the other parameters. Below, we will assume that, by default, Ω is
small enough, so that the lengthscales 1/|kj | of the base flow are large, |kj |h� 1.

3. Weakly nonlinear equation for the evolution of disturbances
Considering the evolution of a one-dimensional disturbance of the basic oscillatory

flow, we start with the hypothesis, in line with our principal motivation of comparing
with the non-oscillatory case of Babchin et al. (1983), that there is still a range of
parameters within which the exact NS problem (see Appendix) can be reduced, by
discarding a number of terms in the equations, to the simplified form which was
used, to a good approximation, in the simpler cases of Babchin et al. (1983) and
Yiantsios & Higgins (1989). The bulk momentum and incompressibility equations
of the simplified disturbance problem for the film describe a Stokes flow in the
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Figure 1. The oscillating basic velocity profile, U, at small frequency, Ω = 1
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lubrication approximation:

uyy =
1

µ
px, (3.1)

py = 0, (3.2)

vy = −ux, (3.3)

where u(x, y, t) and v(x, y, t) are the disturbances of the horizontal and vertical com-
ponents of the velocity disturbance and p(x, y, t) is the disturbance of the pressure
field. At the fixed bottom plate, the no-slip boundary condition is

u(y = −h) = v(y = −h) = 0, (3.4)

and at the liquid–liquid interface – assuming, in particular, that the disturbances of
the top fluid are, as in the earlier papers, negligible – the balances of the normal and
tangential stresses give

p(y = η) = −σηxx − g(ρL − ρF )η := Π (x, t), (3.5)

uy(y = η) = mULy(y = η)−UFy(y = η) := S(x, t), (3.6)

where η(x, t) determines the interface, y = η(x, t), m = µL/µF is the viscosity ratio, σ
is the interfacial tension, and g is the acceleration due to gravity. (For the moment, to
derive a more general evolution equation, we allow for the viscosities to be different.)
This simplified description, having the merit of yielding a single evolution for η(x, t),
presupposes a number of parametric conditions. In particular, the lengthscale (in
general, changing with time) λ of the disturbances is assumed here to be long
compared with the depth of the film, h, so that h/λ � 1. In order to drop the
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time derivative and advective terms from the Navier–Stokes equations, we require
that the Reynolds number and the ratio of the time-dependent to viscous terms
be small, i.e. (U0h/νF )h/λ � 1 and h2/(νFΥ ) � 1, where Υ is the characteristic
timescale and νj is the kinematic viscosity, νj = µ/ρj . Neglecting the disturbances
of the top fluid requires that their vertical lengthscale be large, |kL|h � 1. In § 3.2,
after the dissipative evolution equation is obtained and yields the characteristic scales
of all the variables, we find the complete set of such parameter constraints. They
follow from the consistency requirement that the terms of the NS equations (see
Appendix) which have been discarded in the transition to the simplified problem be
much smaller than the terms retained, i.e. those appearing in (3.1)–(3.6). We show
that there is a non-empty range of parameters where all the constraints are satisfied,
and our single-equation description of evolution should be a good approximation.
Since the constraints require that a number of dimensionless groups be independently
small, this technique of the derivation of evolution equations has been termed ‘the
multiparameter perturbation approach’ (see, e.g. Frenkel et al. (1987); for a discussion
of this method, see Frenkel & Indireshkumar 1996, 1999).

The velocity and pressure disturbances in the film, given by

u(x, ỹ, t) = Sỹ +
Πx

µ

(
1
2
ỹ2 − ỹh̃) , (3.7)

v(x, ỹ, t) = −Πxx

µ

ỹ3

6
+

(
Πxh̃

µ
− S

)
x

1
2
ỹ2, (3.8)

p(x, ỹ, t) = Π(x, t), (3.9)

where ỹ = y + h, can be readily verified to be the solution of (3.1)–(3.6). Substituting
these expressions into the kinematic boundary condition

ηt +UF (η, t)ηx + u(η, t)ηx = v(η, t), (3.10)

yields the evolution equation

h̃t + Dh̃x +
1

3µF
(h̃3(δh̃+ σh̃xx)x)x = 0, (3.11)

where h̃ = h+ η, δ = g(ρL − ρF ), and

D =
{
UF + [mULy −UFy]h̃+ [mULyy −UFyy]

1
2
h̃2
}
y=η

. (3.12)

Equations (3.11) and (3.12) have been obtained here without specifying the basic
velocity profiles Uj(y, t). So they can be used for different film systems, with the
appropriate changes in (3.11) accounting for different stabilizing and destabilizing
factors. For example, for a core–annular configuration, the destabilizing effect comes
from the transverse component of interfacial curvature, and therefore δ is replaced
by σ/a2, where a is the radius of the core.

A further simplification to (3.11) ensues if it is assumed that (i) the characteristic
lengthscale of the basic flow is large (which is always the case in the low-frequency
limit Ω → 0),

|kF |h� 1, (3.13)

(we also assume ρF ∼ ρL ∼ ρ, say) and (ii) the disturbance remains small-amplitude,

η � h. (3.14)
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By making a coordinate transformation x̃ = x − ∫ t Uj(0, τ) dτ, corresponding to a
reference frame of the basic interface, and using the leading terms of the Taylor series
about η = 0 in (3.11) and (3.12), we obtain the following equation for η:

ηt +W0 cosΩt η ηx +
h3

3µ
(δηxx + σηxxxx) = 0, (3.15)

where the tilde has been dropped. Here, the nonlinear term is due to the first term of
(3.12); the contributions of all the other terms of (3.12) are much smaller owing to
the constraint (3.13). We note that essentially the same evolution equation would be
obtained for the case when the top plate is fixed and the bottom one oscillates, or when
both plates oscillate with the same frequency. This is the case because we can always
shift to the reference frame in which the bottom plate is at rest. The Navier–Stokes
equations in this non-inertial frame would include terms equivalent to oscillatory,
horizontal components of the acceleration due to gravity, but those drop out in the
transition to the problem of disturbances. Also, the basic velocity changes only by a
term which depends only on time, so its y-derivative which appears in the equations
for disturbances remains the same. Thus the equations and boundary conditions of
the disturbances are essentially unchanged, and lead to the same evolution equation
(3.15).

Equation (3.15) can be rescaled into a standard form by letting x̄ = x/Λ, η = Aη̄,
t̄ = t/T and Ω̄ = ΩT , where

Λ =
(σ
δ

)1/2

, T =
3µσ

h3δ2
, A =

h4δ3/2

3µU0σ1/2
. (3.16)

(Λ, T and A are the time-asymptotic characteristic amplitude, lengthscale and
timescale, respectively, which render all the terms of the evolution equation to be pair-
wise balanced when the nonlinear coefficient is near its maximum value, cosΩt ∼ 1).
As a result, we arrive at the dimensionless evolution equation

ηt + cosΩt η ηx + ηxx + ηxxxx = 0, (3.17)

(where the bars over all the variables and the constant Ω have been dropped). This
equation is clearly of the Kuramoto–Sivashinsky type, but the nonlinear term has an
oscillatory factor. (A similar equation has been derived by Coward et al. (1995) (for
a different, core–annular system), but with the coefficient of the nonlinear term in
(3.17) consisting of a bigger constant part and a smaller oscillatory term, in contrast
to the ‘strongly oscillatory’, i.e. zero on average, case of (3.17).)

Equation (3.17) has the same linear stability characteristics as the canonical,
constant-coefficient, KS equation. A normal-mode analysis is carried out by let-
ting η ∝ eγt+ikx, where γ is the growth rate of an infinitesimal disturbance, and k its
wavenumber. Substituting this expression into (3.17) yields the dispersion relation

γ = k2 − k4. (3.18)

Disturbances grow with time if 0 < k < 1, with a maximum γm of γ being γm = 1
4

at

k = 21/2, but decay for k > 1 owing to the stabilizing effect of the surface tension on
the short-wave disturbances.

The constants Λ and T of (3.16) are, respectively, the characteristic lengthscale and
timescale of the disturbance evolution on its both linear and the time-asymptotic,
(weakly) nonlinear stages. The asymptotic amplitude A is connected to them by the
order-of-magnitude relation A/h ∼ (Λ/T )/U0.
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Figure 2. Time dependence of the amplitude ηM of the interface deflection given by the
quasi-equilibrium model equation (3.20), for Ω = 0.025; t0 = 62.83 and τ = 4.

3.1. Quasi-equilibrium approximation

If the coefficient of the nonlinear term in (3.17) had a constant value, K , it is known
(Babchin et al. 1983) that there would be a pairwise balance of terms in the time-
asymptotic regime, which leads to the estimate of the amplitude η ∼ K−1. Suppose
now that the value of the constant instantaneously jumps from K to K1 and remains
equal to K1 afterwards. Then the amplitude will change from the initial K−1 to the
terminal K−1

1 value over a time of the order γ−1
m . It is then reasonable that when the

coefficient varies continuously as in (3.17), the amplitude will have the corresponding
‘quasi-equilibrium’ value ηE(t) given by

ηE ∼ 1

| cosΩt| , (3.19)

as long as the instantaneous rate of change γi of the coefficient, γi := (d/dt)/(log ηE),
is much smaller than the ‘relaxation rate’ γm = 1

4
. Clearly, ηE →∞ as t→ t0, and also

γi → ∞, where t0 is defined by cosΩt0 = 0; hence Ωt0 = 1
2
π. We can assume that the

amplitude has its quasi-equilibrium value ηE almost all the way, except for a short
period of time of length 2τ about the time t0 during which γi is not sufficiently small,
viz. γi > γm. Also, during this short time interval the nonlinear term is almost zero, so
we can assume that the amplitude grows exponentially, as if governed by the linear
theory. Thus, the model amplitude ηM (see figure 2) is given by

ηM(t) ∼


ηE(t) =

1

| cosΩt| for t < tr or t > t > tr + 2τ,

ηE(tr) exp(γm(t− tr)) =
1

| cosΩtr| exp (γm(t− tr)) for tr < t < tr + 2τ,

(3.20)
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where tr is defined by γi(tr) = γm. Here,

γi(tr) =
d

dt
log

1

| cosΩtr| = Ω
sinΩtr
cosΩtr

= Ω
sin (Ωt0 − Ωτ)
cos(Ωt0 − Ωτ) . (3.21)

Since Ωt0 = 1
2
π and τ ∼ 1 with Ω � 1, so that Ωτ� 1, the last expression simplifies

as follows:

Ω
sin ( 1

2
π− Ωτ)

cos ( 1
2
π− Ωτ) ≈ Ω

sin 1
2
π

sinΩτ
≈ 1

τ
. (3.22)

Thus γi(tr) ≈ τ−1, and since it should be equal to γm = 1
4
, it follows that τ = 4,

justifying the assumption τ ∼ 1 above. Clearly, these considerations are rather crude,
and therefore can be expected to predict the scaling of the maximum amplitude
with the frequency correctly, but not the constant coefficient of that dependence. It is
reasonable to expect that the real value of the maximum amplitude, ηmax := maxt ηm(t)
(where ηm(t) := maxx η(x, t)), lies between ηM(tr) and ηM(tr + 2τ), that is

1
4
Ω−1 6 ηmax(Ω−1) 6 1

4
Ω−1 exp (γm2τ) = 1

4
Ω−1 exp (2) (3.23)

Numerical experiments confirm the Ω−1 scaling of the amplitude (see figure 6).

3.2. Parameter constraints

In deriving the evolution equation (3.17) using the multiparameter perturbation
approach, we have dropped a number of terms from the exact equations of the
problem. For consistency, these terms must be much smaller than the terms that are
retained. This requirement entails certain constraints on the parameters of the system.
Those parameter constraints are considered below.

We can estimate all the terms of the exact problem in the time asymptotic regime
since the characteristic scales of the solution are known. Namely, the characteristic
lengthscale of film disturbances in the vertical direction is the average film thickness h
so that, for the purpose of estimates ∂/∂y ∼ 1/h, ∂2/∂y2 ∼ 1/h2, etc. The horizontal, x-
derivatives are estimated similarly by using the fact that the characteristic lengthscale
in the x-direction is given by Λ = (σ/δ)1/2, and the time-derivatives are estimated
with the timescale T = 3µσ/h3δ2 (3.16). Neglecting the x-derivative as compared
to the y-derivative of the velocities in the viscous terms implies Λ � h, that is the
parameter constraint

B1/2 =
hδ1/2

σ1/2
� 1 (3.24)

(where, recalling the definition, δ = g(ρL − ρF ), and B := h2δ/σ is the Bond number,
which is thus small). To estimate other terms, we require the estimate of the maximum
equilibrium amplitude, ηmax, which follows from the quasi-equilibrium approximation.
In order for this approximation to be good, we must require Ω � 1, or since Ω = Ω∗T ,
where Ω∗ is the dimensional frequency,

Ω∗ � h3δ2

µσ
. (3.25)

On the other hand, the frequency of the top plate is required to be sufficiently large to
prevent excessive growth of the disturbance due to the destabilizing terms in (3.17), so
that η remains small as compared to h. The latter requirement means that ηmax � h/A,
where A = h4δ3/2/3µU0σ

1/2 (see equation (3.16)). From (3.23), ηmax ∼ 1/Ω. Thus, we
obtain the parameter constraint 1/Ω � h/A, or in terms of the original dimensional
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parameters, h6δ7/2/Ω∗µ2σ3/2U0 � 1. This inequality can also be written in the form
separating the parameters of motion, U0 and Ω∗, from the fluid parameters:

Ω∗U0 � h6δ7/2

µ2σ3/2
. (3.26)

The condition |kh| � 1 becomes the following constraint in terms of the original
dimensional parameters: (Ω∗1/2/ν1/2)h� 1, or

Ω∗ � µ

ρh2
. (3.27)

The advective terms in the Navier–Stokes are negligible if U0h
2/ΛνF � 1, or

U0 � σ1/2µ

h2δ1/2ρ
. (3.28)

Then, the requirement that the time-derivative terms are small is satisfied as a conse-
quence of (3.25), (3.26) and (3.28), and so it does not lead to additional constraints.

Combining (3.26) and (3.28) yields

Ω∗ � ρh8δ4

µ3σ7/2
. (3.29)

Thus Ω∗ is bounded away from zero by a quantity independent of U0.
Requiring that the viscous terms in the y-momentum equation (3.2) be negligible,

and using the expressions (3.8) and (3.9) for v and p in terms of Π and S defined
by equations (3.5) and (3.6) with the Taylor expansion S = ([mULyy −UFyy]y=0)η, we
obtain the parameter constraint U0Ω

∗h/Λg � 1, or

U0Ω
∗ � σ1/2g

δ1/2h
. (3.30)

(Then, the S terms in (3.7)–(3.8) are negligible.) All the independent constraints on
U0 and Ω∗ above can be summarized as follows:

U0 � σ1/2µ

h2δ1/2ρ
, Ω∗ � min

(
h3δ2

µσ
,
µ

ρh2

)
,

h6δ7/2

µ2σ3/2
� Ω∗U0 � σ1/2g

δ1/2h
. (3.31)

The only other independent constraint is (3.24) which does not involve either U0 or
Ω∗. Other such constraints which are not independent but follow from (3.31) are

h5δ2ρ

σµ2
� 1,

h7δ4

µ2σ2g
� 1. (3.32)

In the above estimates, ρL ∼ ρF ∼ ρ, etc.
In a more formal version of this multiparameter technique, the evolution equation

is obtained by using multiparameter expansions in powers of several independently
small parameters corresponding to the above constraints.

As a physical example, ρF = 1.1, ρL = 1, µ = 1, σ = 100, H = 1, h = 0.1, U0 ∼ 3
(so that δ ∼ 100, Λ ∼ 1, T ∼ 10), all in CGS units, and (dimensionless) Ω ∼ 0.1
satisfy all the above constraints.

4. Numerical experiments
In order to study the effects of the oscillatory nonlinearity, (3.17) is solved nu-

merically over extended spatial domains, 0 6 x 6 L = 2πq where q � 1, subject to
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Figure 3. Initial disturbance, (4.1), used in the numerical simulations of the modified
Kuramoto–Sivashinsky equation (3.17).

periodic boundary conditions. For large intervals, q � 1, we can expect that solutions
with a characteristic lengthscale of O(1) do not significantly depend on the specific
type of boundary conditions except for small regions near the boundaries. (We have
verified this fact using the method of lines scheme with non-periodic homogeneous
boundary conditions.) A variation of a pseudospectral Fourier method is employed
(see e.g. Frenkel & Indireshkumar 1996). Random initial conditions of the form

η (x, 0) = A cos qx+ B

7∑
l=1

cos ((l + 1)qx− φl) (4.1)

are used, where B < A and φl is a randomly generated phase shift. An example of
this initial condition is shown in figure 3.

4.1. Low-frequency chaos

The canonical KS equation exhibits deterministic chaos for sufficiently large intervals
with periodic boundary conditions in certain parametric regions, and is recovered by
setting Ω = 0 in (3.17). (An extensive literature exists on the subject of numerical
simulations of the KS equation. For smaller spatial intervals, the character of the
solutions can vary with the interval length, quickly changing between chaotic and
non-chaotic attractors. However, the solutions become predominantly chaotic when
the length of the interval exceeds a certain critical value. See, e.g. Coward et al. (1995)
and Wittenberg & Holmes (1999) and references therein, where the length value
L ≈ 50–60 is cited for the onset of the universal large-interval character of solutions.
This value is close to those in the present work.) The interaction between the terms
of the canonical KS equation has been thoroughly explained by Babchin et al. (1983)
and Frenkel et al. (1987). Initially, a small-amplitude disturbance grows exponentially
as a result of the destabilizing gravitational term (the second-order derivative in
(3.17)), with a growth rate given by (3.18). Since the nonlinearity is proportional to η,
at some point, it becomes as large as the linear terms, and prevents further growth.
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A nonlinear hyperbolic wave equation is obtained if η is sufficiently large, so that the
linear terms can be neglected. Since the wave speed is proportional to the amplitude
of the disturbance, wave distortion and steepening occur. This steepening process
is eventually slowed down and arrested by the surface tension. We observe similar
phenomena in our numerical simulations of equation (3.17). Figure 4 shows snapshots
of the interface at t=128.5, 160, 191.5 and 223, for q = 6

√
2, and Ω = 0.05. Figures 4(a)

and 4(c) correspond to times when cosΩt ≈ ±1. At low frequencies, there are sizable
periods of time during the cycle when the amplitude of the nonlinear term is close to
its maximum, and therefore we expect the system to behave like the canonical case,
with the exception that the right-hand faces are steeper if the wave speed is positive
and left-hand faces are steeper if the speed is negative. However, as cosΩt decreases,
the effect of the nonlinearity weakens and eventually the destabilizing gravitational
term gains control causing the amplitude of the disturbance to grow exponentially.
Figures 4(b) and 4(d) correspond to cases when cosΩt ≈ ∓0.15.

In figure 5, the modulus ηm(t) of η, defined as

ηm(t) = max
06x6L

|η(x, t)|, (4.2)

is plotted as a function of time using the same parameter values as in figure 4, and
compared with the canonical KS equation. During periods of the cycle when the
coefficient of the nonlinearity becomes small, ηm increases exponentially to a value
close to 20. This is then followed by a rapid decrease to a value close to 2, which
is close to the base value for the canonical KS equation. ηm does not deviate too
much from this baseline value for a considerable part of the period, until the value
of cosΩt is close to zero again, and the exponential growth cycle reappears. As Ω
decreases, the maximum value of ηm increases since the amount of time during which
the exponential growth can occur, increases. Note that Ω → 0 is a singular limit for
equation (3.17). However, (3.17) is a good approximation only in a certain window
of frequencies which is bounded away from zero (see § 3.2). This follows from the
validity conditions given by the multiparameter perturbation approach. Otherwise,
the large-time behaviour of the solutions of the oscillatory KS equation is statistically
periodic. The variation of the mean of the peaks of ηm with respect to Ω was predicted
semi-quantitatively by the quasi-equilibrium analysis of § 3.2.

The results of numerical experiments shown in figure 6 confirm the Ω−1 scaling
of the amplitude predicted by the quasi-equilibrium theory in § 3.2, falling within the
bounding lines given by the inequalities of (3.23). Here each estimate for ηmax was
obtained from the numerical simulations by taking the average of several of the large
peaks of ηm. The experimental value of the coefficient C of the linear dependence
ηmax = CΩ−1 with the best fit to the numerical data is C = 1.19.

5. Transition to higher frequencies
As the frequency increases, ηmax decreases. However, this behaviour holds only up

to a certain point, Ωc. For Ω > Ωc, the system tends to solutions of a different type.
The modified KS equation, (3.17), has the exact solutions

η(x, t) =


Ωx

sinΩt+ 1
, 0 6 x 6 X and L−X 6 x 6 L,

Ω(x− 1
2
L)

sinΩt− 1
, X 6 x 6 L−X,

(5.1)
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Figure 4. Instantaneous profiles of the time-asymptotic interface for a low frequency, Ω = 0.05, for
four instances of time separated by approximately a quarter of the period: (a) t = 128.5, (b) 160,
(c) 191.5, (d) 223.

where X = 1
4
L(sinΩt+ 1) and sinΩt 6= ±1. This function is actually a solution to a

wave equation consisting of the first two terms of (3.17), since the second and fourth
derivatives of η with respect to x are obviously zero. It is continuous except when
sinΩt = ±1, but is not differentiable at x = X and x = L − X. The discontinuity
is smoothed out by the second and fourth derivative terms. Equation (5.1) can be
thought of as an ‘outer’ solution that is approximately valid outside some time-
dependent inner layer. We note that the canonical KS equation has an exact solution
of a similar type, namely η = x/t. However, in contrast to (5.1), this solution decays
with time.

From (5.1), ηmax = 1
4
ΩL by using the outer solution. Thus ηmax grows with Ω, as

opposed to low-frequency solutions where it decays as Ω−1. An example of the time
evolution for η at higher frequency is shown in figure 7, with Ω = 1. The initial
condition is the same as for the low-frequency cases, i.e. as given by (4.1). With time,
the number of waves within the computational domain decreases, as the smaller-
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Figure 5. Time dependence of the maximum interface deflection: comparison between the
canonical case, ———, Ω = 0, and an oscillatory case, −−−−, Ω = 0.05.

amplitude waves are absorbed by the larger and faster moving waves. Each time the
wave absorption takes place, there is a sharp jump in ηm, as shown in figure 8, where
ηm is plotted against time for various values of Ω. This absorption stops when the
solution is close to (5.1), as shown in figure 9.

For Ω close to Ωc, numerical solutions of (3.17) turn out to depend on the initial
condition. If we start with the random condition given by (4.1), the large-time solution
is similar to that observed above for very low frequencies. However, large-frequency
behaviour is observed if (5.1) is used as an initial condition. This sensitivity to initial
conditions can be seen from a plot of ηmax versus time for Ω. If the initial condition is
of the zigzag type as given by (5.1), the maximum amplitude decreases with frequency
until Ω ≈ 0.25. Above this frequency, ηmax increases almost linearly, and matches well
with the maximum of (5.1) at large frequencies. If a random initial condition is used
instead, the behaviour of ηmax does not change for frequencies up to 0.25. However,
ηmax remains relatively flat for 0.25 < Ω < 0.8. At Ω ≈ 0.8, ηmax increases sharply and
attains the same value as in the case of the zigzag initial condition (see figure 10).
Since, for the zigzag solution, the length of the computational domain is not much
greater than the characteristic lengthscale, it is not a priori clear that the solution
will remain essentially the same for the types of boundary conditions other than the
periodic conditions we used. However, we have verified that this persistence of the
zigzag solutions is the case, by using the numerical method of lines with non-periodic,
homogeneous boundary conditions.

The parameter constraints obtained in § 3.2 for low-frequency solutions were based
on the quasi-equilibrium theory which does not apply for the zigzag solutions. It is
not difficult to modify the considerations of § 3.2 to obtain the parameter constraints
appropriate here. One clear difference is that instead of Ω � 1 we have now Ω & 1,
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i.e. (3.25) is replaced with

Ω∗ &
h3δ2

µσ
. (5.2)

Also, we do not have now the condition (3.24) because the second derivatives of
velocities corresponding to the zigzag solutions are exactly zero. Instead, we have the
small-slope requirement η∗/L∗ � 1, or ηmaxA � ΛL, (where from (5.1) ηmax ∼ ΩL),
or Ω∗ � U0/h. Then, instead of (3.26), the small-amplitude requirement ηmaxA � h
becomes Ω∗ � U0/L

∗. This constraint can be combined with the previous one:

Ω∗ � U0

max (h, L∗)
, (5.3)

where L∗ is the dimensional length of the domain. The constraint (3.27) remains
unchanged. Instead of (3.28), we obtain

U0 � L∗ν
h2
. (5.4)

Equation (3.30) is replaced with

Ω∗ � gL∗

U0h
. (5.5)

These constraints can be satisfied with the same values of parameters as those given
at the end of § 3.2, except for the following changes: U0 ∼ 10, Ω∗ ∼ 1, and L∗ ∼ 1.

However, the above considerations apply only to the outer solutions. Since the
conditions of validity of the overall solution consisting of different outer regions
connected by narrow boundary-layer regions are not known, the physical realizability
of the zigzag solution remains a moot point.
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Figure 7. A series of snapshots of the interface for a higher frequency, Ω = 1 at four instances of
time, (a) t = 40, (b) 80, (c) 120, (d) 160, show the formation of a time-asymptotic profile.

6. Large-amplitude regimes and rupture of the film
Above, we have established, as our principal result, the existence of small-amplitude

oscillatory regimes of film flow. Since the film thickness remains everywhere close to
its average value, the possibility of rupture is clearly excluded. For other paramet-
ric regimes, such that the time-asymptotic disturbance of the film thickness is not
small, the question of rupture is not that simple. The complete answer requires
the numerical investigation of the ‘large-amplitude’ evolution equation replacing the
‘small-amplitude’ equation (3.17), as obtained by an appropriate rescaling of (3.11):

ht + A(cosΩt)hhx + [h3(hx + hxxx)]x = 0, (6.1)

where we have, for simplicity, omitted the tildes.
Although such a complete numerical investigation, involving the space of the two

parameters, the frequency and the amplitude, and, in addition, the dependence on
initial conditions, is beyond the scope of the present paper, we include here some
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varies from small to large values. ———, random initial condition; −−−−, zigzag initial conditions.

preliminary results of numerical simulations of the highly nonlinear equation (6.1)
bearing on the question of film rupture.

Equation (6.1) is readily rescaled to the form

ht + (cosΩt)hhx + S[h3(hx + hxxx)]x = 0, (6.2)

where S := 1/A, which at Ω = 0 reduces to the equation of a core–annular film
flow studied in Frenkel & Kerchman (1994) (see also Kerchman & Frenkel 1994;
Kerchman 1995; Frenkel & Indireshkumar 1996). Similar to these earlier studies, for
large A, we can expect that the amplitude of the fluctuations is actually small (of
order S), and the evolution is well approximated by the small-amplitude equation
(3.17). Indeed, our simulations of the highly-nonlinear equation (6.1) with large A
have essentially reproduced the small-amplitude results obtained above with the
weakly-nonlinear equation (3.17). In particular, there is no rupture for A� 1.

In the opposite case, i.e. when A is not large, the weakly-nonlinear equation (3.17)
is not good at all, and equation (6.1) should be used. Periodically, there occur time
intervals during which the coefficient A(cosΩt) of the advective term nearly vanishes.
As was first found by Hammond (1983), equation (6.1) with no advective term,
A = 0, leads to rupture; at certain places along the film, the thickness approaches 0
as time tends to infinity. On the other hand, there are repeated time intervals with
the coefficient A(cosΩt) being almost constant (= A), that is as if Ω = 0. It was
found in the aforementioned studies of such non-oscillatory (steady-flow) versions of
equation (6.2), that the film thickness remains bounded away from zero (thus the
film being prevented from rupture by the steady base flow, via the advective term
of the equation). To decide between these contradictory indications as to the fate
of the film, numerical simulations appear to be necessary. Such simulations with A
of order one, starting with small-amplitude initial conditions, show that first, similar
to the other highly-nonlinear equations, the film profile takes the form of a file of
pulses whose amplitude is of order one, with a thinned film between them. When the
frequency Ω is large, the time a pulse has to travel to one side is small, so the pulse
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Figure 11. Minimum film thickness and maximum film thickness versus time for
Ω = 0.05 and A = 0.25.

essentially stays in the same place. Therefore, no collisions and coalescences of pulses
(such as those in the steady-flow case of Kerchman & Frenkel 1994) occur, and the
inter-pulse, ‘substrate’ film, as in the case of immobile pulses of the stagnant-film
system (see Hammond 1983), continues indefinitely on its way to rupture. On the
contrary, for smaller Ω, there are coalescences of pulses; they correspond to the
fast increases of the maximum thickness in figure 11. In cases we observed, only
one or two pulses (see figure 12 for the latter case) remained after the coalescence
cascade which indicates that, depending on the initial conditions, more than one time-
asymptotic configuration is possible. In figure 11 (see also figure 13), for Ω = 0.05,
there appears to be no end to the decrease in the minimum film thickness (which
occurs in the substrate parts of the film), although some of our runs were as long
as of order 105 time units. Figure 14 illustrates the drastic differences between this
case and the steady-flow, no-rupture case: when the frequency in equation (6.1) is
turned off, Ω = 0, (at such t that cosΩt = 1), the minimum thickness quickly returns
to its (non-decreasing) steady-flow value (also shown is the fall of the minimum
thickness if the whole advective term is turned off, by switching to A = 0, the case
of no base flow). However, a small value of Ω does not necessarily imply rupture:
when we switched to Ω = 0.001 near the end of the run shown in figure 11 a new
asymptotic regime developed (see figure 13) in which the minimum film thickness does
not decay. In figure 13, in order to contrast the rupturing behaviour for Ω = 0.05
and the non-rupturing one for Ω = 0.001, the time interval between two neighbouring
minimum film thickness data points is one period of oscillation, and each data point
corresponds to the smallest film thickness during the time cycle. (For the two cases,
the actual times corresponding to the zero point on the time axis in the figure are
different – as, clearly, are the actual time intervals covered by the two data sets.) The
notable difference between the two cases shown in figure 13 is as follows. For the
case Ω = 0.05, the lateral run length of the pulses is shorter than the computational
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Figure 12. Instantaneous profiles of the time-asymptotic interface for a low frequency, Ω = 0.05,
for four instances of time separated by a quarter of the period: (a) t = 19 862.3, (b) 19 893.7,
(c) 19 925.1, (d) 19 956.5.

domain of periodicity (see figure 12; the smallest values of the minimum film thickness
such as shown in figure 13 are observed to be reached at the instants when the pulses
change their direction of motion, on the boundary between the pulses and the region
never covered by the pulses during their motion.) In contrast, for the non-rupture
case Ω = 0.001, every point of the computational domain is reached by the (single,
in this case) pulse. One possible conjecture would be that this difference is a decisive
factor distinguishing between rupture and non-rupture. A follow-up conjecture is that
for the infinite domain after the coalescences of pulses are completed, there are points
between every two adjacent spatial intervals covered by neighbouring pulses where
the rupture will develop. However, verifying these conjectures would require extensive
computational work, and is a separate challenging project.
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7. Discussion
We have shown that in certain parametric regimes, the nonlinear Rayleigh–Taylor

instability of the oscillating Couette film flow is governed by a Kuramoto–Sivashinsky
equation whose nonlinear term is modified by a time-oscillating factor (3.17). Our
numerical simulations on extended spatial intervals demonstrate that there is nonlinear
saturation of the Rayleigh–Taylor instability similar to the case of a steady primary
flow (Babchin et al. 1983). Since the amplitude of the interface undulations is much
smaller than the average film thickness, the Rayleigh–Taylor instability fails to rupture
the film in these parametric regimes which imply certain windows of the velocity
amplitude and frequency of the oscillations. This should be contrasted with pendant
drops of Yiantsios & Higgins (1989), in which the film thickness between the drops
is much smaller than the average thickness. For low frequencies, the large time
behaviour of solutions shows periodic increases and decreases in the amplitude of the
chaotic pulses of the usual Kuramoto–Sivashinsky type. The low-frequency scaling
of the amplitude of the solutions on the frequency has been predicted by quasi-
equilibrium theory, based on ideas stemming from those of Babchin et al. (1983). For
high frequencies, simulations of the evolution equation uncover a completely different
time-asymptotic behaviour, a piecewise-linear zigzag wave in an oscillatory motion. In
a certain window of frequencies, the large-time behaviour of both types was observed
at the same frequency depending on the initial conditions.

Our preliminary simulations of the large-amplitude regimes have shown both cases
of non-rupture and rupture of the film at small frequencies, whereas the film always
ruptures at larger frequencies. We have formulated certain conjectures from which it
follows that a sufficiently extended film will always rupture. More exactly, it will reach
such a small thickness that the long-range attractive van der Waals molecular forces
become important. However, to verify whether this is the case will require further
computational work.

For the future, it would be interesting to consider the Rayleigh–Taylor instability
of the two-fluid film system for the case of multidirectional primary flows, taking into
consideration the most general types of disturbances. (For some preliminary results,
see Frenkel & Halpern (2000).)

Appendix. Long-wave analysis
In this Appendix, we give the exact equations of the problem and a further

discussion of their relation to the simplified problem (3.1)–(3.6). We use a long-wave
analysis similar to that of Yiantsios & Higgins (1989), but further complicated by the
basic flow, which, moreover, is time-dependent.

The disturbances to the Nusselt type solutions (see § 2) for the flow in the film and
the top liquid satisfy the following conservation of momentum and mass equations:

ρj

(
∂uj

∂t
+ (Uj + uj)

∂uj

∂x
+ vj

(
∂uj

∂y
+
∂Uj

∂y

))
= −∂pj

∂x
+ µj

(
∂2uj

∂x2
+
∂2uj

∂y2

)
, (A 1)

ρj

(
∂vj

∂t
+ (Uj + uj)

∂vj

∂x
+ vj

∂vj

∂y

)
= −∂pj

∂y
+ µj

(
∂2vj

∂x2
+
∂2vj

∂y2

)
, (A 2)

∂uj

∂x
+
∂vj

∂y
= 0, (A 3)
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where uj and vj are the disturbances of the horizontal and vertical velocity compo-
nents, and pj is the disturbance of the pressure. At the bottom and top plates, y = −h
and y = H , respectively, no-slip is required:

uj = vj = 0. (A 4)

At the interface between the film and the top liquid, y = η, there is continuity
of velocities, continuity of tangential stresses, and a jump in the normal stresses
condition owing to surface tension, σ: [uj] = 0; [τ j · t] = 0; and [τ j · n] = κn where
[·] denotes the jump across the interface, n and t are the unit normal and tangent
vectors to the interface, κ is the curvature of the interface, τ j = σj · n is the stress
vector and σj = −Ipj + µj(∇uj + ∇uTj ) is the stress tensor. In component form these
are as follows:

[uj +Uj] = 0, [vj] = 0, (A 5)[
(1− η2

x)µj

(
∂Uj

∂y
+
∂uj

∂y
+
∂vj

∂x

)
− 4µjηx

∂uj

∂x

]
= 0, (A 6)

[
−pj + 2µj

η2
x − 1

η2
x + 1

∂uj

∂x
− 2µj

ηx

η2
x + 1

(
∂Uj

∂y
+
∂uj

∂y
+
∂vj

∂x

)]
= σ

ηxx

(η2
x + 1)3/2

+ g(ρL − ρF )η. (A 7)

In addition, the position of the liquid-film interface, η, satisfies the kinematic boundary
condition:

∂η

∂t
+UF

∂η

∂x
= −∂Q

∂x
, (A 8)

where Q is the disturbance of the streamwise flow rate, Q =
∫ η
−h uf dy.

The above equations are non-dimensionalized using the same tentative scalings as in
Yiantsios & Higgins (1989), and in addition appropriate scalings for the base velocities.
The streamwise lengthscale Λ of the disturbances is assumed here to be long compared
with the depth of the film, h, so that ε = h/Λ� 1. When the film thickness is perturbed
by an amount N, the destabilizing buoyancy term at the interface, δN (where δ =
(ρL − ρF )g) is counterbalanced by the capillary pressure term σN/Λ2 which ‘tries’ to
restore the interface to its equilibrium position. Therefore, Λ is is of order (σ/δ)1/2.
We scale the pressure on δN, x on Λ, and y on h. Assuming the Stokes flow limit, a
horizontal velocity scale U1 is obtained by balancing the disturbance pressure gradient
in the horizontal direction and the dominant viscous term uyy: U1 = εδhN/µF . This
scale is not as obvious at it may seem; it involves an implicit assumption that the
S terms in (3.7)–(3.8) are much smaller than the Π terms, which might not be the
case for some parametric regimes. Continuity then provides the vertical velocity scale,
V1 = εU1. The balance of the time derivative, ηt, and the vertical velocity term in the
kinematic boundary condition gives the characteristic timescale, T1 = N/(εU1). The
velocity of the base flow in the film is scaled on U0 so that the scale of the velocity
shear rate ∂UF/∂y is U0/h (see (2.3)) provided there is no intrinsic lengthscale of UF

shorter than h. For the oscillatory basic flow, (2.2), this implies the condition

|kFh| � 1. (A 9)
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The dimensionless momentum and continuity equations in the film region are:

ε2ρFδh
3

µ2
F

(
∂uF

∂t
+ α

(
uF
∂uF

∂x
+ vF

∂uF

∂y

))
+
ερFU0h

µF

(
UF

∂uF

∂x
+ vF

∂UF

∂y

)

= −∂pF
∂x

+ ε2 ∂
2uF

∂x2
+
∂2uF

∂y2
, (A 10)

ε4ρFδh
3

µ2
F

(
∂vF

∂t
+ α

(
uF
∂vF

∂x
+ vF

∂vF

∂y

))
+
ε3ρFU0h

µF
UF

∂vF

∂x

= −∂pF
∂y

+ ε2

(
ε2 ∂

2vF

∂x2
+
∂2vF

∂y2

)
, (A 11)

∂uF

∂x
+
∂vF

∂y
= 0, (A 12)

where the condition

α = N/h < 1 (A 13)

is assumed.
In the top liquid, assuming that H > Λ, the vertical coordinate is scaled on Λ the

same as the horizontal coordinate, the velocity disturbances are scaled on U1, the
pressure on µLU1/Λ, and the basic velocity on ΛU0/h (where for simplicity we assume
that H is not much greater than Λ, H ∼ Λ), so that the momentum and continuity
equations are:

ρLδh
3

µLµF

(
∂uL

∂t
+ α

(
uL
∂uL

∂x
+ vL

∂uL

∂Y

))
+
ρLU0Λ

2

µLh

(
UL

∂uL

∂x
+ vL

∂UL

∂Y

)

= −∂pL
∂x

+
∂2uL

∂x2
+
∂2uL

∂Y 2
, (A 14)

ρLδh
3

µLµF

(
∂vL

∂t
+ α

(
uL
∂vL

∂x
+ vL

∂vL

∂Y

))
+
ρLU0Λ

2

µLh
UL

∂vL

∂x

= −∂pL
∂Y

+
∂2vL

∂x2
+
∂vL

∂Y 2
, (A 15)

∂uL

∂x
+
∂vL

∂Y
= 0. (A 16)

The dimensionless conditions of continuity of interfacial velocities are

uL = uF + ∆

(
UF − Λ

h
UL

)
, vL = vF , (A 17)

where ∆ = U0/U1.
Our scaling presupposes that if uF and uL are of order of magnitude one, then the

combination in parentheses in (A 17) must be of order of magnitude one or less. It
can be shown that this requirement on the basic velocities is satisfied in the case of
m = O(1) and small-amplitude regimes as a consequence of the S terms in (3.7)–(3.8)
being small. In other parametric regimes, the scale of uL might be greater than that
of uF , being determined by the basic velocity terms in (A 17).
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The tangential stress condition becomes

−4αε2 ∂uF

∂x
ηx +

(
1− α2ε2η2

x

)(
∆
∂UF

∂y
+
∂uF

∂y
+ ε2 ∂vF

∂x

)
= −4αε2m

∂uL

∂x
ηx + m

(
1− α2ε2η2

x

)(
∆
∂UL

∂Y
+ ε

∂uL

∂Y
+ ε

∂vL

∂x

)
. (A 18)

The normal stress condition (A 7) can be simplified by substituting the sum of the
terms in parentheses, as found from the tangential condition (A 6). This yields

−(pF − mε2pL)− 2ε2 1 + α2ε2η2
x

1− α2ε2η2
x

(
∂uF

∂x
− m∂uL

∂x

)
=

ηxx

(1 + α2ε2η2
x)

3/2
+ η. (A 19)

Since in the dimensionless equations all the variable quantities are scaled to be of
order of magnitude one and taking into account ε � 1, we can omit all expressions
multiplied by positive powers of ε, so that for the film the long-wave Stokes flow
equations (3.1)–(3.6) are obtained. However, this is legitimate only if a number of
additional requirements are satisfied. Namely, the ratio of the time-dependent to
viscous terms must be small, ε2ρFδh

3/µ2
F � 1, and the Reynolds number must also

be small,

ερFU0h

µF
� 1. (A 20)

Also, for the top-liquid terms in the normal stress condition to be negligible, it is only
required that εm � 1; for simplicity we assume m ∼ 1 (and ρL/ρF ∼ 1). (If εm � 1
is not the case, it is still possible to obtain an evolution equation. It will contain
non-local integral terms leading to dispersive effects, similar to Frenkel (1988) and
Papageorgiou et al. 1990.)

Similar to Yiantsios & Higgins (1989), it is not necessary to have Stokes flow in
the top liquid. If the inertial terms are important, there is a viscous boundary layer
near the interface. A new effective scale for disturbances appears which should be
much larger than h for the viscous top-liquid terms to be negligible in the boundary
conditions. Estimating the lengthscale from the balance of the viscous terms and
the term containing UL(∂uL/∂x) in the momentum equation (A 14) we arrive at the
condition (ερFU0h/µF )1/3 � 1, just slightly stronger than the condition of smallness
of the Reynolds number given above (cf. (A 20)).

Most of the above conditions expressed by inequalities contain the basic parameters
only. However, for example, the condition (A 13) contains the amplitude N which is
originally not in terms of the basic parameters. The maximum η oscillates with time,
and the dependence of N on the parameters can only be obtained by the analysis
of the evolution equation as carried out in § 3.1. Such considerations as used in this
Appendix should be regarded as heuristic arguments only which can suggest the
form of the simplified problem. However, we must be cautious as regards the validity
domain of the evolution equation; in the end, we should verify that all the scales
assumed in non-dimensionalization are reproduced as a result of the solution of the
simplified problem and the evolution equation.

If the wave amplitude N is to be small, the above inequality constraints are the
consistency conditions of § 3.2.
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